Growth, crystal structure, Hirshfeld surface, optical, piezoelectric, dielectric and mechanical properties of bis(L-asparaginium hydrogensquarate) single crystal

Author:

Yadav HarshORCID,Sinha NidhiORCID,Goel SahilORCID,Singh BudhendraORCID,Bdikin IgorORCID,Saini Anupama,Gopalaiah KovuruORCID,Kumar Binay

Abstract

Molecular organic single crystals of bis(L-asparaginium hydrogensquarate) monohydrate [BASQ; (C8H10N2O7)2·H2O] have been grown by solution technique. Crystallographic information was investigated by single-crystal X-ray diffraction (SCXRD) analysis. Hirshfeld surface and fingerprint plot studies were performed to understand the intermolecular interactions of the BASQ crystal in graphical representation. Functional group identification was studied with FT–IR (Fourier transform–IR) spectroscopy. The positions of proton and carbon atoms in the BASQ compound were analyzed using NMR spectroscopy. High transparency and a wide band gap of 3.49 eV were observed in the linear optical study by UV–vis–NIR spectroscopy. Intense and broad photoluminescence emissions at room temperature were observed in blue and blue–green regions. The frontier molecular orbitals of the BASQ molecule were obtained by the DFT/B3LYP method employing 6-311G** as the basis set. The dielectric study was carried out with temperature at various frequency ranges. The piezoelectric charge coefficient (d33) value of BASQ crystal was found to be 2 pC/N, which leads to its application in energy harvesting, mechanical sensors and actuators applications. In the non-linear optical study, the BASQ crystal showed promising SHG conversion efficiency. Mechanical properties of the BASQ crystal were studied experimentally by Vicker's microhardness technique, which revealed that the grown crystal belonged to the softer category. BASQ crystal void estimation reveals the mechanical strength and porosity of the material.

Funder

DRDO

DU-DST R & D Grant

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3