Abstract
2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane (CL-20)-based cocrystals have gained increasing attention as a means of obtaining insensitive high explosives. However, the design of ideal candidates for these cocrystals remains difficult. This work compares the crystal energies of the CL-20–dinitrobenzene (DNB) and CL-20–2,4,6-trinitrotoluene (TNT) cocrystals with those of the respective pure coformers. The results indicate that the cocrystal formation is driven by the differences in the energies of the cocrystals and the coformers. Furthermore, analysis via Hirshfeld surfaces and two-dimensional fingerprint plots confirms that the O...O, O...H, O...N and C...O interactions were the main force for stabilizing the CL-20-based cocrystal structure. Based on these findings, a novel energetic–energetic cocrystal of CL-20–2,4,6-trinitrophenol (TNP) was designed and prepared by means of a rapid method for solvent removal. The crystal structure was investigated via powder X-ray diffraction methods, solid-state nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. The results revealed that the O—H...O hydrogen bonding interaction between the phenolic hydroxyl group of TNP and nitro groups of CL-20, as well as nitro...π, nitro...nitro and ONO2...π(N)NO2 interactions, based on the benzene ring and nitro groups, are the main interactions occurring in the cocrystal.
Funder
National Natural Science Foundation of China
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献