Quantifying weak interactions in ferroelectric and paraelectric phases of phenazine and chloroanilic acid co-crystal using experimental and theoretical electron densities

Author:

Anil Kumar G. N.ORCID,Hathwar Venkatesha R.ORCID

Abstract

The co-crystal of phenazine and chloroanilic acid is known to display paraelectric properties at room temperature. It shows a paraelectric to ferroelectric phase transition at 253 K and has an incommensurately modulated ferroelectric phase below 137 K. High-resolution synchrotron X-ray data were collected at 160 K to model the experimental electron-density distributions, and derived topological properties from the electron density were used to quantify the weak interactions responsible for the origin of the ferroelectric phase. The structure and non-covalent interactions are analysed using Hirshfeld surfaces and energy frameworks. The topological properties, energies, atomic charges and molecular electrostatic potential surfaces are determined from the experimental data, further supported by theoretical calculations. The results from the ferroelectric phase are compared with the paraelectric phase. Although the structural descriptions indicate neutral phenazine and chloroanilic acid molecules in the ferroelectric phase, the topological properties of the electron density indicate a considerable amount of proton transfer in the O—H...O hydrogen bond. Indeed, the displaced H atom in the O—H...O hydrogen bond suggests a mixed covalent/polar nature of chemical bonding. Subtle changes in the chemical bonding and proton-transfer pathways could be detected from the high-resolution electron-density studies.

Funder

Vision Group on Science and Technology

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3