Distortions of a flexible metal-organic framework from substituted pendant ligands

Author:

Munn Alexis S.,Clarkson Guy J.,Walton Richard I.

Abstract

Four new variants of the 1,4-benzenedicarboxylate MIL-53 structure have been prepared for CoIIunder solvothermal conditions and their structures solved and refined from single-crystal X-ray data. All materials contain pendant pyridine-N-oxide ligands that bridge pairs of CoIIatoms in the inorganic backbone of the structureviaO. By the use of the ligands 3-bromopyridine-N-oxide, 4-methoxypyridine-N-oxide, isoquinoline-N-oxide and 4-phenylpyridine-N-oxide, materials are prepared with the same topology but distinct structures. These illustrate how the MIL-53 structure is able to distort to accommodate the bulk of the various substituents on the pyridine ring. The bulkiest pendant ligand, 4-phenylpyridine-N-oxide, results in a distortion of the diamond-shaped channels in an opposite sense to that seen previously in expanded forms of the parent MIL-53 structure. By comparison with published crystal structures for MIL-53 with various occluded guests, the structural distortions that take place to accommodate the pendant ligands are quantified and it is shown how a twisting of the 1,4-benzenedicarboxylate ligand, instead of a hinging about the μ2-carboxylate-metal connection, allows the new structures that are observed.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3