Abstract
The crystal structure of phurcalite, Ca2[(UO2)3O2(PO4)2]·7H2O, orthorhombic, a = 17.3785 (9) Å, b = 15.9864 (8) Å, c = 13.5477 (10) Å, V = 3763.8 (4) Å3, space group Pbca, Z = 8 has been refined from single-crystal XRD data to R = 0.042 for 3182 unique [I > 3σ(I)] reflections and the hydrogen-bonding scheme has been refined by theoretical calculations based on the TORQUE method. The phurcalite structure is layered, with uranyl phosphate sheets of the phosphuranylite topology which are linked by extensive hydrogen bonds across the interlayer occupied by Ca2+ cations and H2O groups. In contrast to previous studies the approach here reveals five transformer H2O groups (compared to three expected by a previous study) and two non-transformer H2O groups. One of the transformer H2O groups is, nevertheless, not linked to any metal cation, which is a less frequent type of H2O bonding in solid state compounds and minerals. The structural formula of phurcalite has been therefore redefined as {Ca2(H2
[3]O)5(H2
[4]O)2}[(UO2)3O2(PO4)2], Z = 8.
Funder
This research was supported by the Czech Science Foundation
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献