Experimental and theoretical charge density, intermolecular interactions and electrostatic properties of metronidazole

Author:

Kalaiarasi ChinnasamyORCID,George Christy,Gonnade Rajesh G.ORCID,Hathwar Venkatesha R.ORCID,Poomani KumaradhasORCID

Abstract

Metronidazole is a radiosensitizer; it crystallizes in the monoclinic system with space groupP21/c. The crystal structure of metronidazole has been determined from high-resolution X-ray diffraction measurements at 90 K with a resolution of (sin θ/λ)max= 1.12 Å−1. To understand the charge-density distribution and the electrostatic properties of metronidazole, a multipole model refinement was carried out using the Hansen–Coppens multipole formalism. The topological analysis of the electron density of metronidazole was performed using Bader's quantum theory of atoms in molecules to determine the electron density and the Laplacian of the electron density at the bond critical point of the molecule. The experimental results have been compared with the corresponding periodic theoretical calculation performed at the B3LYP/6-31G** level usingCRYSTAL09. The topological analysis reveals that the N—O and C—NO2exhibit less electron density as well as negative Laplacian of electron density. The molecular packing of crystal is stabilized by weak and strong inter- and intramolecular hydrogen bonding and H...H interactions. The topological analysis of O—H...N, C—H...O and H...H intra- and intermolecular interactions was also carried out. The electrostatic potential of metronidazole, calculated from the experiment, predicts the possible electrophilic and nucleophilic sites of the molecule; notably, the hydroxyl and the nitro groups exhibit large electronegative regions. The results have been compared with the corresponding theoretical results.

Funder

University Grants Commission- Rajiv Gandhi National Senior Research Fellowship

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3