First-principles investigation of V-doping effects on Fe3Cr4C3 carbide in hypereutectic Fe–Cr–C hardfacing coating

Author:

Shi Zhijun,Shao Wei,Xing Xiaolei,Ren Xuejun,Zhou Yefei,Yang Qingxiang

Abstract

The mechanical property improvement of M 7C3 carbides in hypereutectic Fe–Cr–C hardfacing coating is required for its widespread application and longer service life. Vanadium is a frequently used alloying element, while the effects of V doping on the stability and tensile properties of M 7C3 carbide have been rarely reported. In this article, the formation enthalpy, structural stability, anisotropic tensile properties and electronic structure of V-doped M 7C3 (Fe3Cr4C3) carbide were calculated by the first-principles method. The mechanism by which the tensile property of Fe3Cr4C3 carbide can be improved by V-atom doping is discussed. The results show that the formation enthalpy (−0.24 eV/atom) of Fe3Cr3VC3 carbide is lower than that (0.48 eV/atom) of Fe3Cr4C3 carbide, which indicates that the formation of Fe3Cr3VC3 carbide is more facile. The absence of an imaginary frequency in the phonon dispersion spectra reveals that the Fe3Cr3VC3 carbide model is stable. Compared with Fe3Cr4C3 carbide, the tensile strength of Fe3Cr3VC3 carbide in the (0001) crystal face is increased from 44.42 to 48.46 GPa and that in the (1111) crystal face is also increased, from 28.99 to 34.19 GPa. The reasons that the tensile property of Fe3Cr4C3 can be improved by V doping are the electron redistribution and the formation of stronger bonds in Fe3Cr3VC3 carbide.

Funder

National Natural Science Foundation of China

EU H2020 Marie Skłodowska-Curie project "i-Weld"

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3