Abstract
Crystal charge density is a ground-state electronic property. In ferroelectrics, charge is strongly influenced by lattice andvice versa, leading to a range of interesting temperature-dependent physical properties. However, experimental determination of charge in ferroelectrics is challenging because of the formation of ferroelectric domains. Demonstrated here is the scanning convergent-beam electron diffraction (SCBED) technique that can be simultaneously used for imaging ferroelectric domains and identifying crystal symmetry and its fluctuations. Results from SCBED confirm the acentric tetragonal, orthorhombic and rhombohedral symmetry for the ferroelectric phases of BaTiO3. However, the symmetry is not homogeneous; regions of a few tens of nanometres retaining almost perfect symmetry are interspersed in regions of lower symmetry. While the observed highest symmetry is consistent with the displacive model of ferroelectric phase transitions in BaTiO3, the observed nanoscale symmetry fluctuations are consistent with the predictions of the order–disorder phase-transition mechanism.
Funder
US Department of Energy, Office of Science
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献