Novel aluminophosphate Na6[Al3P5O20] with the original microporous crystal structure established in the study of a pseudomerohedric microtwin

Author:

Yakubovich Olga V.ORCID,Kiriukhina Galina V.ORCID,Volkov Anatoliy S.,Dimitrova Olga V.,Borovikova Elena Yu.ORCID

Abstract

The synthesis and characterization of a new aluminophosphate, Na6[Al3P5O20], obtained as single crystals in the same experiment together with Cl-sodalite, Na8[Al6Si6O24]Cl2, is reported. Na6[Al3P5O20], with a strongly pseudo-orthorhombic lattice, is described by the monoclinic crystal structure established in the study of a pseudomerohedric microtwin. The design of Na6[Al3P5O20] can be interpreted as an alternative to sodalite, with a monoclinic (pseudo-orthorhombic) 2×4×1 super-structure and unit-cell parameters multiples of those of sodalite: a ≃ 2a s, b ≃ 4b s and cc s. The triperiodic framework is built by AlO6, AlO4 and PO4 polyhedra having vertex-bridging contacts. While all the oxygen vertices of the Al-centred octahedra and tetrahedra are shared with phosphate groups, some of the PO4 tetrahedra remain `pendant', e.g. containing vertices not shared with other polyhedra of the aluminophosphate construction. Na atoms occupy framework channels and cavities surrounded by eight-, six- and four-membered windows with maximal effective pore widths of 4.86 × 3.24 and 4.31 × 3.18 Å. The generalized framework density is equal to 19.8, which means that the compound may be classified as a microporous zeolite. The Na6[Al3P5O20] crystal structure is discussed as being formed from octahedral rods arranged in two perpendicular directions, similar to the rods elongated in one direction in the NASICON-type compounds, which have been intensively investigated as promising materials for batteries. Analogous properties can be expected for phases with a modified composition of the Na6Al3P5O20 topology, where the Al atoms at the centres of octahedra are replaced by Fe, V or Cr.

Funder

Russian Foundation for Basic Research

Russian Science Foundation

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3