Disordered sodium alkoxides from powder data: crystal structures of sodium ethoxide, propoxide, butoxide and pentoxide, and some of their solvates

Author:

Beske MauriceORCID,Cronje Stephanie,Schmidt Martin U.,Tapmeyer LukasORCID

Abstract

The crystal structures of sodium ethoxide (sodium ethanolate, NaOEt), sodium n-propoxide (sodium n-propanolate, NaO n Pr), sodium n-butoxide (sodium n-butanolate, NaO n Bu) and sodium n-pentoxide (sodium n-amylate, NaO n Am) were determined from powder X-ray diffraction data. NaOEt crystallizes in space group P 421 m, with Z = 2, and the other alkoxides crystallize in P4/nmm, with Z = 2. To resolve space-group ambiguities, a Bärnighausen tree was set up, and Rietveld refinements were performed with different models. In all structures, the Na and O atoms form a quadratic net, with the alkyl groups pointing outwards on both sides (anti-PbO type). The alkyl groups are disordered. The disorder becomes even more pronounced with increasing chain length. Recrystallization from the corresponding alcohols yielded four sodium alkoxide solvates: sodium ethoxide ethanol disolvate (NaOEt·2EtOH), sodium n-propoxide n-propanol disolvate (NaO n Pr·2 n PrOH), sodium isopropoxide isopropanol pentasolvate (NaO i Pr·5 i PrOH) and sodium tert-amylate tert-amyl alcohol monosolvate (NaO t Am· t AmOH, t Am = 2-methyl-2-butyl). Their crystal structures were determined by single-crystal X-ray diffraction. All these solvates form chain structures consisting of Na+, –O and –OH groups, encased by alkyl groups. The hydrogen-bond networks diverge widely among the solvate structures. The hydrogen-bond topology of the i PrOH network in NaO i Pr·5 i PrOH shows branched hydrogen bonds and differs considerably from the networks in pure crystalline i PrOH.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3