Comparative study of conventional and synchrotron X-ray electron densities on molecular crystals

Author:

Vosegaard Emilie S.ORCID,Ahlburg Jakob V.,Krause LennardORCID,Iversen Bo B.ORCID

Abstract

Five different electron density datasets obtained from conventional and synchrotron single crystal X-ray diffraction experiments are compared. The general aim of the study is to investigate the quality of data for electron density analysis from current state-of-the-art conventional sources, and to see how the data perform in comparison with high-quality synchrotron data. A molecular crystal of melamine was selected as the test compound due to its ability to form excellent single crystals, the light atom content, and an advantageous suitability factor of 3.6 for electron density modeling. These features make melamine an optimal system for conventional X-ray diffractometers since the inherent advantages of synchrotron sources such as short wavelength and high intensity are less critical in this case. Data were obtained at 100 K from new in-house diffractometers Rigaku Synergy-S (Mo and Ag source, HyPix100 detector) and Stoe Stadivari (Mo source, EIGER2 1M CdTe detector), and an older Oxford Diffraction Supernova (Mo source, Atlas CCD detector). The synchrotron data were obtained at 25 K from BL02B1 beamline at SPring-8 in Japan (λ = 0.2480 Å, Pilatus3 X 1M CdTe detector). The five datasets were compared on general quality parameters such as resolution, 〈I/σ〉, redundancy and R factors, as well as the more model specific fractal dimension plot and residual density maps. Comparison of the extracted electron densities reveals that all datasets can provide reliable multipole models, which overall convey similar chemical information. However, the new laboratory X-ray diffractometers with advanced pixel detector technology clearly measure data with significantly less noise and much higher reliability giving densities of higher quality, compared to the older instrument. The synchrotron data have higher resolution and lower measurement temperature, and they allow for finer details to be modeled (e.g. hydrogen κ parameters).

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In data we trust: X-ray diffraction experiments for charge density investigations;Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3