Structural insights intoM2O–Al2O3–WO3(M= Na, K) system by electron diffraction tomography

Author:

Andrusenko Iryna,Krysiak Yaşar,Mugnaioli Enrico,Gorelik Tatiana E.,Nihtianova Diana,Kolb Ute

Abstract

TheM2O–Al2O3–WO3(M= alkaline metals) system has attracted the attention of the scientific community because some of its members showed potential applications as single crystalline media for tunable solid-state lasers. These materials behave as promising laser host materials due to their high and continuous transparency in the wide range of the near-IR region. A systematic investigation of these phases is nonetheless hampered because it is impossible to produce large crystals and only in a few cases a pure synthetic product can be achieved. Despite substantial advances in X-ray powder diffraction methods, structure investigation on nanoscale is still challenging, especially when the sample is polycrystalline and the structures are affected by pseudo-symmetry. Electron diffraction has the advantage of collecting data from single nanoscopic crystals, but it is frequently limited by incompleteness and dynamical effects. Automated diffraction tomography (ADT) recently emerged as an alternative approach able to collect more complete three-dimensional electron diffraction data and at the same time to significantly reduce dynamical scattering. ADT data have been shown to be suitable forabinitiostructure solution of phases with large cell parameters, and for detecting pseudo-symmetry that was undetected in X-ray powder data. In this work we present the structure investigation of two hitherto undetermined compounds, K5Al(W3O11)2and NaAl(WO4)2, by a combination of electron diffraction tomography and precession electron diffraction. We also stress how electron diffraction tomography can be used to obtain direct information about symmetry and pseudo-symmetry for nanocrystalline phases, even when available only in polyphasic mixtures.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3