Effect of disordered imidazole substructure on proton dynamics in imidazolium malonic acid salt

Author:

Ławniczak PawełORCID,Pogorzelec-Glaser KatarzynaORCID,Pietraszko Adam,Hilczer Bożena

Abstract

The influence of a disorder in cation substructure on proton conductivity of imidazolium malonate (Im-MAL) is studied. Imidazolium in salts with dicarboxylic acids have been found to have a well ordered hydrogen-bond network and only in Im-MAL [Pogorzelec-Glaser et al. (2006). Mater. Sci.-Pol. (2006), 24, 245–252] were two types of cation observed: ordered Im-I and disordered Im-II. Im-I is involved in hydrogen bonds with malonic acid molecules, whereas Im-II is disordered between two symmetrically equivalent positions with occupancy of 0.5. NMR studies by Mizuno et al. [Hyperfine Interact. (2015), 230, 95–100] showed an 180° flip of ordered Im-I and calculated contribution of Im-I flipping to proton conductivity of Im-MAL. Ławniczak et al. [Solid State Ionics (2017), 306, 25] reported that temperature variation of the proton conductivity by impedance spectroscopy yielded the conductivity value higher than that calculated by Mizuno for Im-I. Moreover these detailed structure studies at 240 K and 280 K excluded any phase transition. Repeated X-ray studies from 14 K to 360 K show a continuous increase in anisotropic displacement factors. The half-occupied hydrogen bonds linking the Im-II nitrogen atoms with hydroxyl oxygen atoms may be considered as electric dipoles and the interbond proton transfer as dipolar switching. It assumed here a coherent switching at low temperatures and a decrease of the coupling at higher temperatures with the disappearance at cross-over temperature at 318 K. The possible proton pathway in the crystal structure is determined and the contribution of the proton dynamics of Im-II to phonon-assisted proton diffusion in the ordered substructure is estimated.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3