Abstract
The diffraction patterns acquired with transmission electron microscopes gather reflections from all crystallites that overlap in the foil thickness. The superimposition renders automated orientation or phase mapping difficult, in particular when secondary phase particles are embedded in a dominant diffracting matrix. Several numerical approaches specifically developed to overcome this issue for 4D scanning precession electron diffraction data sets are described. They consist either in emphasizing the signature of the particles or in subtracting the matrix information out of the collected set of patterns. The different strategies are applied successively to a steel sample containing precipitates that are in Burgers orientation relationship with the matrix and to an aluminium alloy with randomly oriented Mn-rich particles.
Funder
Centre of Excellence of Multifunctional Architectured Materials "CEMAM"
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献