Abstract
To obtain a better understanding of which coformers to combine for the successful formation of a cocrystal, techniques from data mining and network science are used to analyze the data contained in the Cambridge Structural Database (CSD). A network of coformers is constructed based on cocrystal entries present in the CSD and its properties are analyzed. From this network, clusters of coformers with a similar tendency to form cocrystals are extracted. The popularity of the coformers in the CSD is unevenly distributed: a small group of coformers is responsible for most of the cocrystals, hence resulting in an inherently biased data set. The coformers in the network are found to behave primarily in a bipartite manner, demonstrating the importance of combining complementary coformers for successful cocrystallization. Based on our analysis, it is demonstrated that the CSD coformer network is a promising source of information for knowledge-based cocrystal prediction.
Funder
European Union's Horizon 2020 Research and Innovation Program
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献