C60 in a peptidic cage: a case of symmetry mismatch studied by crystallography and solid-state NMR

Author:

Gilski MiroslawORCID,Bernatowicz PiotrORCID,Sakowicz ArkadiuszORCID,Szymański Marek P.ORCID,Zalewska AldonaORCID,Szumna AgnieszkaORCID,Jaskólski MariuszORCID

Abstract

A supramolecular complex, formed by encapsulation of C60 fullerene in a molecular container built from two resorcin[4]arene rims zipped together by peptidic arms hydrogen bonded into a cylindrical β-sheet, was studied by X-ray crystallography, solid-state and solution NMR, EPR spectroscopy and differential scanning calorimetry (DSC). The crystal structure, determined at 100 K, reveals that the complex occupies 422 site symmetry, which is compatible with the molecular symmetry of the container but not of the fullerene molecule, which has only 222 symmetry. The additional crystallographic symmetry leads to a complicated but discrete disorder, which could be resolved and modelled using advanced features of the existing refinement software. Solid-state NMR measurements at 184–333 K indicate that the thermal motion of C60 in this temperature range is fast but has different activation energies at different temperatures, which was attributed to a phase transition, which was confirmed by DSC. Intriguingly, the activation energy for reorientations of C60 in the solid state is very similar for the free and encaged molecules. Also, the rotational diffusion coefficients seem to be very similar or even slightly higher for the encaged fullerene compared to the free molecule. We also found that chemical shift anisotropy (CSA) is not the main relaxation mechanism for the 13C spins of C60 in the studied complex.

Funder

National Science Centre, Poland

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3