Crystal and magnetic structures of R 2Ni2In compounds (R = Tb and Ho)

Author:

Baran StanisławORCID,Deptuch AleksandraORCID,Hoser AndreasORCID,Penc Bogusław,Przewoźnik Janusz,Szytuła Andrzej

Abstract

Crystal and magnetic structures of R 2Ni2In (R = Tb and Ho) have been studied using powder neutron diffraction at low temperatures. The compounds crystallize as orthorhombic crystal structures of the Mn2AlB2 type. At low temperatures, the magnetic moments localized solely on the rare earth atoms form antiferromagnetic structures. The Tb magnetic moments, equal to 8.8 (4) μB and parallel to the c axis, form a collinear magnetic structure described by the propagation vector k = [½ , ½ , ½]. This magnetic structure is stable up to the Néel temperature T N = 40 K. For Ho2Ni2In a complex, temperature-dependent magnetic structure is detected. In the temperature range 6.1–8.6 K, an incommensurate sinusoidal magnetic structure, described by the propagation vector k 1 = [0.24, 1, 0.52] is observed, while in the temperature interval 2.2–2.5 K a square-modulated magnetic structure, related to k 2 = [0.17,{{5} \over {6}},{{1} \over {2}}] (the component along the a axis slightly differs from the commensurate value) and its third harmonics 3k 2 = [0.50,{{5} \over {2}},{{3} \over {2}}] is found. At 3.1–3.7 K as well as below 2 K, a coexistence of both detected magnetic structures is observed. The Ho magnetic moments remain parallel to the c axis in both the sine- and square-modulated magnetic structures. The low-temperature heat capacity data confirm a first-order transition near 3 K.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3