σ-Hole interactions in small-molecule compounds containing divalent sulfur groups R 1—S—R 2

Author:

Lundemba Albert S.,Bibelayi Dikima D.,Wood Peter A.ORCID,Pradon Juliette,Yav Zéphyrin G.

Abstract

Hydrogen bonds, aromatic stacking contacts and σ-hole interactions are all noncovalent interactions commonly observed in biological systems. Structural data derived from the Protein Data Bank showed that methionine residues can interact with oxygen atoms through directional S...O contacts in the protein core. In the present work, the Cambridge Structural Database (CSD) was used in conjunction with ab initio calculations to explore the σ-hole interaction properties of small-molecule compounds containing divalent sulfur. CSD surveys showed that 7095 structures contained R 1—S—R 2 groups that interact with electronegative atoms like N, O, S and Cl. Frequencies of occurrence and geometries of the interaction were dependent on the nature of R 1 and R 2, and the hybridization of carbon atoms in C,C—S, and C,S—S fragments. The most common interactions in terms of frequency of occurrence were C,C—S...O, C,C—S...N and C,C—S...S with predominance of Csp 2. The strength of the chalcogen interaction increased when enhancing the electron-withdrawing character of the substituents. The most positive electrostatic potentials (V S,max; illustrating positive σ-holes) calculated on R 1—S—R 2 groups were located on the S atom, in the S—R 1 and S—R 2 extensions, and increased with electron-withdrawing R 1 and R 2 substituents like the interaction strength did. As with geometric data derived from the CSD, interaction geometries calculated for some model systems and representative CSD compounds suggested that the interactions were directed in the extensions of S—R 1 and S—R 2 bonds. The values of complexation energies supported attractive interactions between σ-hole bond donors and acceptors, enhanced by dispersion. The interactions of R 1—S—R 2 with large V S,max and nucleophiles with large negative V S,min coherently provided more negative energies. According to NBO analysis, chalcogen interactions consisted of charge transfer from a nucleophile lone pair to an S—R 1 or S—R 2 antibonding orbital. The directional σ-hole interactions at R 1—S—R 2 can be useful in crystal engineering and the area of supramolecular biochemistry.

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3