Insights on spin delocalization and spin polarization mechanisms in crystals of azido copper(II) dinuclear complexes through the electron spin density Source Function

Author:

Gatti CarloORCID,Macetti GiovanniORCID,Lo Presti LeonardoORCID

Abstract

The Source Function (SF) tool was applied to the analysis of thetheoreticalspin density in azido CuIIdinuclear complexes, where the azido group, acting as a coupler between the CuIIcations, is linked to the metal centres either in an end-on or in an end–end fashion. Results for only the former structural arrangement are reported in the present paper. The SF highlights to which extent the magnetic centres contribute to determine the local spin delocalization and polarization at any point in the dimetallic complex and whether an atom or group of atoms of the ligands act in favour or against a given local spin delocalization/polarization. Ball-and-stick atomic SF percentage representations allow for a visualization of the magnetic pathways and of the specific role played by each atom along these paths, at given reference points. Decomposition of SF contributions in terms of a magnetic and of a relaxation component provides further insight. Reconstruction of partial spin densities by means of the Source Function has for the first time been introduced. At variance with the standard SF percentage representations, such reconstructions offer a simultaneous view of the sources originating from specific subsets of contributing atoms, in a selected molecular plane or in the whole space, and are therefore particularly informative. The SF tool is also used to evaluate the accuracy of the analysed spin densities. It is found that those obtained at the unrestricted B3LYP DFT level, relative to those computed at the CASSCF(6,6) level, greatly overestimate spin delocalization to the ligands, but comparatively underestimate magnetic connection (spin transmission) among atoms, along the magnetic pathways. As a consequence of its excessive spin delocalization, the UB3LYP method also overestimates spin polarization mechanisms between the paramagnetic centres and the ligands. Spin delocalization measures derived from the refinement of Polarized Neutron Diffraction data seem in general superior to those obtained through the DFT UB3LYP approach and closer to the far more accurate CASSCF results. It is also shown that a visual agreement on the spin-resolved electron densities ραand ρβderived from different approaches does not warrant a corresponding agreement between their associated spin densities.

Funder

Danmarks Grundforskningsfond

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3