Author:
Souza Talita Evelyn,Rosa Iara Maria Landre,Legendre Alexandre Oliveira,Paschoal Diego,Maia Lauro J. Q.,Dos Santos Hélio F.,Martins Felipe Terra,Doriguetto Antonio Carlos
Abstract
Three newN-benzylideneaniline derivatives [p-nitrobenzylidene-p-phenylamineaniline (I), 2,4-dinitrobenzylidene-p-phenylamineaniline (II) andp-dinitrobenzylidene-p-diethylamineaniline (III)] containing electron–push–pull groups have been prepared. They present a planarN-benzylideneaniline core and neighbouring functional atoms, which are related through an efficient intramolecular charge transfer (CT). Two of the derivatives crystallize in non-centrosymmetric space groups, a necessary condition for non-linear optical (NLO) responses. The NLO properties were calculated for the molecular conformations determined by single-crystal X-ray diffraction as well as for the four molecules packed into each corresponding unit cell, using a quantum-chemical method at the cam-B3LYP/NLO-V level of theory. As expected from antiparallel face-to-face stacking through centrosymmetry, the main NLO descriptors – namely, the first hyperpolarizability (βtot) and its projection on the dipole moment direction (βvec) – are almost zero for the tetramer of derivative III. Interestingly, the calculated first hyperpolarizability decreases in the non-centrosymmetric unit-cell content of derivative II when compared to its single molecule, which may be related to its molecular pillaring, similar to that observed in derivative III. On the other hand, a desirable magnification of the NLO properties was found for packed units of derivative I, which may be a consequence of its parallel face-to-tail stacking with the CT vectors of all molecules pointing in the same direction. Moreover, the CT vector of compound I makes an angle of θ = 33.6° with its crystal polar axis, resulting in a higher-order parameter (cos3θ = 0.6) compared with the other derivatives. This is in line with the higher macroscopic second-order NLO response predicted for derivative I, βtot= 120.4 × 10−30 e.s.u.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献