Evolution of the α-BaMg(CO3)2 low-temperature superstructure and the tricritical nature of its α–β phase transition

Author:

Ende MartinORCID,Effenberger Herta,Miletich Ronald

Abstract

The crystal structure of the synthetic double carbonate norsethite [BaMg(CO3)2] has been reinvestigated using X-ray diffraction data within the temperature range 100–500 K using a high-sensitivity PILATUS pixel detector. The previously assumed positional shift of the crystallographically unique oxygen atom is confirmed. The shift is associated with a coupled rotation of symmetry-equivalent carbonate groups. It was possible to follow the shift using high-accuracy experiments under varying temperature conditions between 100 K and the critical transition temperature occurring at T c = 363 ± 3 K. The transition of the α-form (space group R{\bar 3}c; below T c), which represents a superstructure of the β-form (space group R{\bar 3}m, with c′ = c/2; above T c) was studied in detail. The tricritical order character of this displacive phase transition was verified by tracking the intensities of the recorded superstructure reflections (l = 2n + 1) from single-crystal diffraction and using high-precision lattice parameters obtained from powder diffraction in transmission geometry. Thermodynamic properties suggest both rotation of the CO3 group and a coordination change of the BaO12 coordination polyhedra as the order parameters driving the temperature-dependent α–β phase transition. Nevertheless, a detailed structural analysis reveals the coordination change of the barium atoms to be the main driving force for the observed transformation.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3