Crystal defects responsible for mechanical behaviors of a WC–Co composite at room and high temperatures – a simulation study

Author:

Fang Jing,Liu Xuemei,Lu Hao,Liu Xingwei,Song XiaoyanORCID

Abstract

The microstructure evolution and changes in the structures of crystal defects of the nanocrystalline WC–Co composite in the process of uniaxial compression were studied by simulations at both room and high temperatures. The deformation processes were demonstrated as a function of stress and temperature for the stages prior to and after yielding of the composite. The Peierls stresses were evaluated for Co and WC dislocations with increasing temperature. The deformation mechanisms for each stage of the stress–strain curve were disclosed, in which the effect of temperature was clarified. It was found that with the increase of stress, from elastic deformation to plastic deformation then to yielding of the composite, the dominant mechanisms are grain boundary migration, formation and motion of dislocations in Co, concurrent motion and reaction of dislocations in Co and WC, and then rotation of WC grains in combination with motion of Co and WC dislocations. At the yielding stage, sliding of WC grain boundaries plays an increasingly important role in the contribution to plastic deformation at high temperatures. With strain the proportion of mobile dislocations decreases, and dislocations pile up at triple junctions of WC grains, WC/WC grain boundaries and WC/Co phase boundaries in priority order, leading to the nucleation and propagation of microcracks in these regions.

Funder

National Natural Science Foundation of China

National Key Program of Research and Development

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3