Abstract
The effects of temperature (100–370 K) and pressure (0–6 GPa) on the non-localized two-electron multicentric covalent bonds (`pancake bonding') in closely bound radical dimers were studied using single-crystal X-ray diffraction on a 4-cyano-N-methylpyridinium salt of 5,6-dichloro-2,3-dicyanosemiquinone radical anion (DDQ) as the sample compound. On cooling, the anisotropic structural compression was accompanied by continuous changes in molecular stacking; the discontinuities in the changes in volume and b and c cell parameters suggest that a phase transition occurs between 210 and 240 K. At a pressure of 2.55 GPa, distances between radical dimers shortened to 2.9 Å, which corresponds to distances observed in extended π-bonded polymers. Increasing pressure further to 6 GPa reduced the interplanar separation of the radicals to 2.75 Å. This may indicate that the covalent component of the interaction significantly increased, in accordance with the results of DFT calculations reported elsewhere [Molčanov et al. (2019), Cryst. Growth Des.
19, 391–402].
Funder
Russian Academy of Sciences
Ministry of Science and Technology, Croatia
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献