Using crystal structure prediction to rationalize the hydration propensities of substituted adamantane hydrochloride salts

Author:

Mohamed Sharmarke,Karothu Durga Prasad,Naumov Panče

Abstract

The crystal energy landscapes of the salts of two rigid pharmaceutically active molecules reveal that the experimental structure of amantadine hydrochloride is the most stable structure with the majority of low-energy structures adopting a chain hydrogen-bond motif and packings that do not have solvent accessible voids. By contrast, memantine hydrochloride which differs in the substitution of two methyl groups on the adamantane ring has a crystal energy landscape where all structures within 10 kJ mol−1of the global minimum have solvent-accessible voids ranging from 3 to 14% of the unit-cell volume including the lattice energy minimum that was calculated after removing water from the hydrated memantine hydrochloride salt structure. The success in using crystal structure prediction (CSP) to rationalize the different hydration propensities of these substituted adamantane hydrochloride salts allowed us to extend the model to predict under blind test conditions the experimental crystal structures of the previously uncharacterized 1-(methylamino)adamantane base and its corresponding hydrochloride salt. Although the crystal structure of 1-(methylamino)adamantane was correctly predicted as the second ranked structure on the static lattice energy landscape, the crystallization of aZ′ = 3 structure of 1-(methylamino)adamantane hydrochloride reveals the limits of applying CSP when the contents of the crystallographic asymmetric unit are unknown.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3