Author:
Tsubomoto Yutaka,Hayashi Satoko,Nakanishi Waro,Sasamori Takahiro,Tokitoh Norihiro
Abstract
The nature ofE2X2σ(4c–6e) of theX-*-E-*-E-*-Xtype is elucidated for 1-(8-XC10H6)E–E(C10H6X-8′)-1′ [(1)E,X= S, Cl; (2) S, Br; (3) Se, Cl; (4) Se, Br] after structural determination of (1), (3) and (4), together with modelA[MeX---E(H)—E(H)---XMe (E= S and Se;X= Cl and Br)]. The quantum theory of atoms-in-molecules dual functional analysis (QTAIM-DFA) is applied. The total electron energy densitiesHb(rc) are plottedversus Hb(rc) –Vb(rc)/2 for the interactions at the bond critical points (BCPs; *), whereVb(rc) show the potential energy densities at the BCPs. Data for the perturbed structures around the fully optimized structures are employed for the plots, in addition to those of the fully optimized structures. The plots were analysed using the polar coordinate (R, θ) representation of the data of the fully optimized structures. Data containing the perturbed structures were analysed by (θp, κp), where θpcorresponds to the tangent line of the plot and κpis the curvature. Whereas (R, θ) shows the static nature, (θp, κp) represents the dynamic nature of interactions.E-*-Eare all classified as shared shell (S) interactions for (1)–(4) and as weak covalent (Cov-w) in nature (S/Cov-w). The nature ofpureCS (closed shell)/typical-HB (hydrogen bond) with no covalency is predicted forE-*-Xin (1) and (3),regularCS/typical-HB nature with covalency is predicted for (4), and an intermediate nature is predicted for (2). The NBO energies evaluated forE-*-Xin (1)–(4) are substantially larger than those in modelAdue the shortened length at the naphthalene 1,8-positions. The nature ofE2X2of σ(4c–6e) is well elucidatedviaQTAIM-DFA.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献