Abstract
Sila-ibuprofen is a new potential nonsteroidal anti-inflammatory drug which deviates from its parent ibuprofen in terms of the electrostatic potential around the carbon/silicon-switched C/Si—H group. Therefore, sila-ibuprofen is more water soluble and has a lower melting enthalpy. However, its binding and inhibition properties of cyclooxygenases appear to be very similar to regular ibuprofen. Therefore, in this study, intermolecular interactions and interaction densities of both ibuprofen and sila-ibuprofen in their biologically active forms, i.e. deprotonated and as the pure S-enantiomers are investigated. Quantum-crystallographically refined salts with argininium and 1-phenylethan-1-amoninium (PEA) counter-cations as crystalline models of the interactions with the guanidine functional group of arginine inside cyclooxygenases are presented. The similarities and differences between the polarization of ibuprofen and sila-ibuprofen in the crystal, enzyme, solvent and isolated environments are discussed based on quantum-chemical calculations. For the explicit crystal and enzyme environments, specifically, molecular dynamics simulations starting from the crystal models were combined with QM/MM calculations.
Funder
Deutsche Forschungsgemeinschaft
Japan Synchrotron Radiation Research Institute
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献