Abstract
The crystal structure of pyrene-1-carbaldehyde (PA), a model polyaromatic hydrocarbon, highly luminescent in the solid state and crystallizing in the triclinic system, has been re-determined at several pressures ranging from atmospheric up to 3 GPa using a diamond anvil cell. A `multi-crystal' approach was used in crystal structure determination, significantly improving completeness of X-ray diffraction data attainable for such a low-symmetry system. The crystal structure consists of infinite π-stacks of PA molecules with discernible dimers, which resemble aggregates formed by pyrene derivatives in solution as well as in the solid state. A series of measurements showed that the average inter-planar distance between individual molecules within π-stacks decreases with pressure in the investigated range. This results in piezochromic properties of PA: a significant sample color change as well as a red-shift of fluorescence with pressure, as studied with UV–vis spectroscopy. Periodic DFT calculations allowed us to relate the variations in the crystal structure with pressure to the changes in the electronic structure of this material.
Funder
National Science Center Poland
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Reference50 articles.
1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1.
2. Piezochromic Porous Metal–Organic Framework
3. The Larger Acenes: Versatile Organic Semiconductors
4. Fine Tuning of Pyrene Excimer Fluorescence in Molecular Beacons by Alteration of the Monomer Structure
5. Pressure-Induced Conformational Change in Organic Semiconductors: Triggering a Reversible Phase Transition in Rubrene
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献