K(Na,K)Na2[Cu2(SO4)4]: a new highly porous anhydrous sulfate and evaluation of possible ion migration pathways

Author:

Siidra Oleg I.ORCID,Charkin Dmitry O.,Kovrugin Vadim M.ORCID,Borisov Artem S.

Abstract

Alkali copper sulfates form a rapidly developing family of inorganics. Herein, we report synthesis and crystal structure, and evaluate possible ion migration pathways for a novel Na-K-Cu anhydrous sulfate, K(Na,K)Na2[Cu2(SO4)4]. The CuO7 and SO4 polyhedra share common vertices and edges to form [Cu2(SO4)4]4− wide ribbons, which link to each other via common oxygen atoms forming the host part of the structure. Four guest alkali sites are occupied by solely K+, mixture of K+ and Na+, and solely Na+, which agrees well with the size of the cavities. The crystal structure of K(Na,K)Na2[Cu2(SO4)4] contains two symmetry-independent Cu sites with [4+1+(2)] coordination environments. The overall coordination polyhedra of Cu2+ can be considered as `octahedra with one split vertex'. A similar coordination mode was observed also in some other multinary copper sulfates, mostly of the mineral world. These coordination modes were reviewed and five types of CuO7 polyhedra are identified. CuO7 polyhedra are almost restricted to copper sulfates and phosphates. It was found that a larger amount of the smaller SO4 2− and PO4 3− anions can cluster around a single Cu2+ cation; in addition, for such relatively small anions, both mono (κ1) and bidentate (κ2) coordination modes to the Cu2+ are possible. The correlation between crystallographic characteristics and bond valence energies showed that the new copper sulfate framework, [Cu2(SO4)4]4−, contains one interconnected path suitable for Na+ mobility at tolerable activation energies and that K(Na,K)Na2[Cu2(SO4)4] can be considered as a potential candidate for novel Na-ion conductors.

Funder

Russian Foundation for Basic Research

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3