Author:
Davarcı Derya,Gür Rüştü,Beşli Serap,Şenkuytu Elif,Zorlu Yunus
Abstract
The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX;X= NO3−, PF6−, ClO4−, CH3PhSO3−, BF4−and CF3SO3−) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n(1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n(2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n(3), [Ag3(HPCP)(CH3PhSO3)3]n(4), [Ag2(HPCP)(CH3CN)(BF4)2]n(5) and {[Ag(HPCP)]·(CF3SO3)}n(6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions ofM/Lratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)–(6), the ligand HPCP shows different coordination modes with AgIions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.62}2{42.610.83}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.26}2{48.66.8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connectedsql/Shubnikov tetragonal plane net with {44.62} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {63.86.12}{63}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connectedfshnet with the point symbol (43.63)2.(46.66.83). The effect of the counteranions on the formation of coordination polymers is discussed in this study.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献