High-resolution electron-microscope images of crystals with correlated atomic displacements

Author:

Etheridge J.

Abstract

A coordinate-space multislice description of the scattering of high-energy electrons is constructed from consecutions of differential operators acting upon atomic potentials. It is used to find expressions for the intensity distribution in high-resolution electron-microscope images of crystals whose atoms are periodically displaced relative to a reference lattice according to a modulation wave. Both static correlated displacements, such as occur in modulated structures, and time-dependent correlated displacements, as are generated by phonons, are considered. Two aspects of the image are examined in detail; its translational symmetry and its dependence upon the correlations between the atomic displacements. It is shown that the intensity distribution due to scattering from static correlated displacements has the translational symmetry of the modulated structure in that projection, as determined by the component of the modulation wavevector perpendicular to the incident beam, whereas that due to scattering from phonons has the translational symmetry of the reference lattice in that projection. The former is a consequence of higher-order Laue-zone interactions. The intensity distribution due to scattering from static displacements depends upon the absolute phase of the displacement at each scattering atomic site whereas that due to scattering from phonons depends only upon the relative phase of the displacements between different scattering sites, both within the same atomic column parallel to the beam and in adjacent columns. In both cases, the influence of the component of the correlation wavevector parallel to the incident beam is different to that perpendicular to the beam; the former affects the intensity mostly at the atomic sites whilst the latter affects the intensity mostly between the atomic sites. It is also observed that, as a consequence of the periodic nature of the polarization-vector function, the interference terms are small, both relative to the non-interference term and in an absolute sense, particularly for phonon scattering. For this reason, the contribution to the image due to scattering from correlated atomic displacements will have greater and sharper atomic contrast than that due to scattering from the reference structure without displacements. In addition, this component of the intensity distribution will not exhibit strong contrast reversal when the objective-lens defocus is changed.

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3