Abstract
The research program at the biomedical imaging facility requires a high-flux hard-X-ray monochromator that can also provide a wide beam. A wide energy range is needed for standard radiography, phase-contrast imaging, K-edge subtraction imaging and monochromatic beam therapy modalities. The double-crystal Laue monochromator, developed for the BioMedical Imaging and Therapy facility, is optimized for the imaging of medium- and large-scale samples at high energies with the resolution reaching 4 µm. A pair of 2 mm-thick Si(111) bent Laue-type crystals were used in fixed-exit beam mode with a 16 mm vertical beam offset and the first crystal water-cooled. The monochromator operates at energies from 25 to 150 keV, and the measured size of the beam is 189 mm (H) × 8.6 mm (V) at 55 m from the source. This paper presents our approach in developing a complete focusing model of the monochromator. The model uses mechanical properties of crystals and benders to obtain a finite-element analysis of the complete assembly. The modeling results are compared and calibrated with experimental measurements. Using the developed analysis, a rough estimate of the bending radius and virtual focus (image) position of the first crystal can be made, which is also the real source for the second crystal. On the other hand, by measuring the beam height in several points in the SOE-1 hutch, the virtual focus of the second crystal can be estimated. The focusing model was then calibrated with measured mechanical properties, the values for the force and torque applied to the crystals were corrected, and the actual operating parameters of the monochromator for fine-tuning were provided.
Funder
Canadian Light Source
Canada Foundation for Innovation
Natural Sciences and Engineering Research Council of Canada
University of Saskatchewan
Western Economic Diversification Canada
National Research Council Canada
Canadian HIV Trials Network, Canadian Institutes of Health Research
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献