Author:
Bazin Dominique,Dessombz Arnaud,Nguyen Christelle,Ea Hang Korng,Lioté Frédéric,Rehr John,Chappard Christine,Rouzière Stephan,Thiaudière Dominique,Reguer Solen,Daudon Michel
Abstract
Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated. The local environment of Sr2+cations in biological apatites present in pathological and physiological calcifications in patients without such Sr-based drugs has been assessed. In this investigation, X-ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using theab initioFEFF9X-ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr2+cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr2+cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr2+versusapatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr2+cations will be localized into the apatite network.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献