Abstract
There is an increasing demand for simple and efficient sample delivery technology to match the rapid development of serial crystallography and its wide application in analyzing the structural dynamics of biological macromolecules. Here, a microfluidic rotating-target device is presented, capable of three-degrees-of-freedom motion, including two rotational degrees of freedom and one translational degree of freedom, for sample delivery. Lysozyme crystals were used as a test model with this device to collect serial synchrotron crystallography data and the device was found to be convenient and useful. This device enables in situ diffraction from crystals in a microfluidic channel without the need for crystal harvesting. The circular motion ensures that the delivery speed can be adjusted over a wide range, showing its good compatibility with different light sources. Moreover, the three-degrees-of-freedom motion guarantees the full utilization of crystals. Hence, sample consumption is greatly reduced, and only 0.1 mg of protein is consumed in collecting a complete dataset.
Funder
National Key Research and Development Plan of China
National Natural Science Foundation of China
Innovation Capability Support Program of Shaanxi
Science and Technology Program of Ali Region, Tibet
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献