Author:
Buttacavoli Antonino,Principato Fabio,Gerardi Gaetano,Bettelli Manuele,Sarzi Amadè Nicola,Zappettini Andrea,Seller Paul,Veale Matthew C.,Fox Oliver,Sawhney Kawal,Abbene Leonardo
Abstract
Cadmium–zinc–telluride (CZT) pixel detectors represent a consolidated choice for the development of room-temperature spectroscopic X-ray imagers, finding important applications in medical imaging, often as detection modules of a variety of new SPECT and CT systems. Detectors with 3–5 mm thicknesses are able to efficiently detect X-rays up to 140 keV giving reasonable room-temperature energy resolution. In this work, the room-temperature performance of 3 mm-thick CZT pixel detectors, recently developed at IMEM/CNR of Parma (Italy), is presented. Sub-millimetre detector arrays with pixel pitch less than 500 µm were fabricated. The detectors are characterized by good room-temperature performance even at high bias voltage operation (6000 V cm−1), with energy resolutions (FWHM) of 3% (1.8 keV) and 1.6% (2 keV) at 59.5 keV and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to recovering the charge losses at the inter-pixel gap region. High rate measurements demonstrated the absence of high-flux radiation-induced polarization phenomena up to 25 × 106 photons mm−2 s−1.
Funder
Italian Ministry for Education, University and Research
AVATAR X
Science and Technology Facilities Council, Central Laser Facility, Science and Technology Facilities Council
Diamond Light Source
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献