In situ X-ray absorption spectroscopic studies of photocatalytic oxidation of As(III) to less toxic As(V) by TiO2 nanotubes

Author:

Hsiung T.-L.,Wei L.-W.,Huang H.-L.,Tuan Y.-J.,Wang H. Paul

Abstract

Arsenic in groundwater caused the black-foot disease (BFD) in many countries in the 1950–1960s. It is of great importance to develop a feasible method for removal of arsenic from contaminated groundwater in BFD endemic areas. Photocatalytic oxidation of As(III) to less toxic As(V) is, therefore, of significance for preventing any arsenic-related disease that may occur. By in situ synchrotron X-ray absorption spectroscopy, the formation of As(V) is related to the expense of As(III) disappearance during photocatalysis by TiO2 nanotubes (TNTs). Under UV/Vis light irradiation, the apparent first-order rate constant for the photocatalytic oxidation of As(III) to As(V) is 0.0148 min−1. It seems that As(III) can be oxidized with photo-excited holes while the not-recombined electrons may be scavenged with O2 in the channels of the well defined TNTs (an opening of 7 nm in diameter). In the absence of O2, on the contrary, As(III) can be reduced to As(0), to some extent. Cu(II) (CuO), as an electron acceptor, was impregnated on the TNTs surfaces in order to gain a better understanding of electron transfer during photocatalysis. It appears that As(III) can be oxidized to As(V) while Cu(II) is reduced to Cu(I) and Cu(0). The molecular-scale data are very useful in revealing the oxidation states and interconversions of arsenic during the photocatalytic reactions. This work has implications in that the toxicity of arsenic in contaminated groundwater or wastewater can be effectively decreased via solar-driven photocatalysis, which may facilitate further treatments by coagulation.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3