Abstract
Fast 3D data analysis and steering of a tomographic experiment by changing environmental conditions or acquisition parameters require fast, close to real-time, 3D reconstruction of large data volumes. Here a performance-optimized TomocuPy package is presented as a GPU alternative to the commonly used central processing unit (CPU) based TomoPy package for tomographic reconstruction. TomocuPy utilizes modern hardware capabilities to organize a 3D asynchronous reconstruction involving parallel read/write operations with storage drives, CPU–GPU data transfers, and GPU computations. In the asynchronous reconstruction, all the operations are timely overlapped to almost fully hide all data management time. Since most cameras work with less than 16-bit digital output, the memory usage and processing speed are furthermore optimized by using 16-bit floating-point arithmetic. As a result, 3D reconstruction with TomocuPy became 20–30 times faster than its multi-threaded CPU equivalent. Full reconstruction (including read/write operations and methods initialization) of a 20483 tomographic volume takes less than 7 s on a single Nvidia Tesla A100 and PCIe 4.0 NVMe SSD, and scales almost linearly increasing the data size. To simplify operation at synchrotron beamlines, TomocuPy provides an easy-to-use command-line interface. Efficacy of the package was demonstrated during a tomographic experiment on gas-hydrate formation in porous samples, where a steering option was implemented as a lens-changing mechanism for zooming to regions of interest.
Funder
US Department of Energy, Office of Science
Laboratory Directed Research and Development, Argonne National Laboratory
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献