TomocuPy – efficient GPU-based tomographic reconstruction with asynchronous data processing

Author:

Nikitin ViktorORCID

Abstract

Fast 3D data analysis and steering of a tomographic experiment by changing environmental conditions or acquisition parameters require fast, close to real-time, 3D reconstruction of large data volumes. Here a performance-optimized TomocuPy package is presented as a GPU alternative to the commonly used central processing unit (CPU) based TomoPy package for tomographic reconstruction. TomocuPy utilizes modern hardware capabilities to organize a 3D asynchronous reconstruction involving parallel read/write operations with storage drives, CPU–GPU data transfers, and GPU computations. In the asynchronous reconstruction, all the operations are timely overlapped to almost fully hide all data management time. Since most cameras work with less than 16-bit digital output, the memory usage and processing speed are furthermore optimized by using 16-bit floating-point arithmetic. As a result, 3D reconstruction with TomocuPy became 20–30 times faster than its multi-threaded CPU equivalent. Full reconstruction (including read/write operations and methods initialization) of a 20483 tomographic volume takes less than 7 s on a single Nvidia Tesla A100 and PCIe 4.0 NVMe SSD, and scales almost linearly increasing the data size. To simplify operation at synchrotron beamlines, TomocuPy provides an easy-to-use command-line interface. Efficacy of the package was demonstrated during a tomographic experiment on gas-hydrate formation in porous samples, where a steering option was implemented as a lens-changing mechanism for zooming to regions of interest.

Funder

US Department of Energy, Office of Science

Laboratory Directed Research and Development, Argonne National Laboratory

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3