A comparison of absorption and phase contrast for X-ray imaging of biological cells

Author:

Nave ColinORCID

Abstract

X-ray imaging allows biological cells to be examined at a higher resolution than possible with visible light and without some of the preparation difficulties associated with electron microscopy of thick samples. The most used and developed technique is absorption contrast imaging in the water window which exploits the contrast between carbon and oxygen at an energy of around 500 eV. A variety of phase contrast techniques are also being developed. In general these operate at a higher energy, enabling thicker cells to be examined and, in some cases, can be combined with X-ray fluorescence imaging to locate specific metals. The various methods are based on the differences between the complex refractive indices of the cellular components and the surrounding cytosol or nucleosol, the fluids present in the cellular cytoplasm and nucleus. The refractive indices can be calculated from the atomic composition and density of the components. These in turn can be obtained from published measurements using techniques such as chemical analysis, scanning electron microscopy and X-ray imaging at selected energies. As examples, the refractive indices of heterochromatin, inner mitochondrial membranes, the neutral core of lipid droplets, starch granules, cytosol and nucleosol are calculated. The refractive index calculations enable the required doses and fluences to be obtained to provide images with sufficient statistical significance, for X-ray energies between 200 and 4000 eV. The statistical significance (e.g. the Rose criterion) for various requirements is discussed. The calculations reveal why some cellular components are more visible by absorption contrast and why much greater exposure times are required to see some cellular components. A comparison of phase contrast as a function of photon energy with absorption contrast in the water window is provided and it is shown that much higher doses are generally required for the phase contrast measurements. This particularly applies to those components with a high carbon content but with a mass density similar to the surrounding cytosol or nucleosol. The results provide guidance for the most appropriate conditions for X-ray imaging of individual cellular components within cells of various thicknesses.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3