xcalib: a focal spot calibrator for intense X-ray free-electron laser pulses based on the charge state distributions of light atoms

Author:

Toyota Koudai,Jurek Zoltan,Son Sang-KilORCID,Fukuzawa Hironobu,Ueda Kiyoshi,Berrah Nora,Rudek Benedikt,Rolles Daniel,Rudenko Artem,Santra RobinORCID

Abstract

The xcalib toolkit has been developed to calibrate the beam profile of an X-ray free-electron laser (XFEL) at the focal spot based on the experimental charge state distributions (CSDs) of light atoms. Characterization of the fluence distribution at the focal spot is essential to perform the volume integrations of physical quantities for a quantitative comparison between theoretical and experimental results, especially for fluence-dependent quantities. The use of the CSDs of light atoms is advantageous because CSDs directly reflect experimental conditions at the focal spot, and the properties of light atoms have been well established in both theory and experiment. Theoretical CSDs are obtained using xatom, a toolkit to calculate atomic electronic structure and to simulate ionization dynamics of atoms exposed to intense XFEL pulses, which involves highly excited multiple core-hole states. Employing a simple function with a few parameters, the spatial profile of an XFEL beam is determined by minimizing the difference between theoretical and experimental results. The optimization procedure employing the reinforcement learning technique can automatize and organize calibration procedures which, before, had been performed manually. xcalib has high flexibility, simultaneously combining different optimization methods, sets of charge states, and a wide range of parameter space. Hence, in combination with xatom, xcalib serves as a comprehensive tool to calibrate the fluence profile of a tightly focused XFEL beam in the interaction region.

Funder

RIKEN, Proposal Program of SACLA Experimental Instuments

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology of Japan, the X-ray Free Electron Laser Utilization Research Project and the X-ray Free Electron Laser Priority Strategy Program

Ministry of Education, Culture, Sports, Science and Technology of Japan, Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials

Tohoku University, Institute of Multidisciplinary Research for Advanced Materials

U.S. Department of Energy, Chemical Sciences, Geosciences, and Biosciences Division

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3