Author:
Oura Masaki,Wagai Tatsuya,Chainani Ashish,Miyawaki Jun,Sato Hiromi,Matsunami Masaharu,Eguchi Ritsuko,Kiss Takayuki,Yamaguchi Takashi,Nakatani Yasuhiro,Togashi Tadashi,Katayama Tetsuo,Ogawa Kanade,Yabashi Makina,Tanaka Yoshihito,Kohmura Yoshiki,Tamasaku Kenji,Shin Shik,Ishikawa Tetsuya
Abstract
In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system's design enables it to be controlled by an external trigger signal for single-shot pump–probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in `single-shot image', `shot-to-shot image (image-to-image storage or block storage)' and `shot-to-shot sweep' modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4fphotoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in `ordinary sweep' mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1score-level spectrum of La-doped SrTiO3is reported as a function of incident power density. The Ti 1score-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1score-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献