Evolution of the magnetic hyperfine field profiles in an ion-irradiated Fe60Al40 film measured by nuclear resonant reflectivity

Author:

Andreeva MarinaORCID,Smekhova Alevtina,Baulin Roman,Repchenko Yurii,Bali Rantej,Schmitz-Antoniak Carolin,Wende HeikoORCID,Sergueev Ilya,Schlage Kai,Wille Hans-ChristianORCID

Abstract

Nuclear resonant reflectivity (NRR) from an Fe60Al40 film was measured using synchrotron radiation at several grazing angles near the critical angle of total external reflection. Using laterally resolved measurements after irradiation with 20 keV Ne+ ions of gradually varying fluence of 0–3.0 × 1014 ions cm−2, the progressive creation of the ferromagnetic A2 phase with increasing ion fluence was confirmed. The observed depth selectivity of the method has been explained by application of the standing wave approach. From the time spectra of the nuclear resonant scattering in several reflection directions the depth profiles for different hyperfine fields were extracted. The results show that the highest magnetic hyperfine fields (∼18–23 T) are initially created in the central part of the film and partially at the bottom interface with the SiO2 substrate. The evolution of the ferromagnetic onset, commencing at a fixed depth within the film and propagating towards the interfaces, has been directly observed. At higher fluence (3.0 × 1014 ions cm−2) the depth distribution of the ferromagnetic fractions became more homogeneous across the film depth, in accordance with previous results.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz Association

Horizon 2020 Framework Programme

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3