Abstract
The microscopy research at the Bionanoprobe (currently at beamline 9-ID and later 2-ID after APS-U) of Argonne National Laboratory focuses on applying synchrotron X-ray fluorescence (XRF) techniques to obtain trace elemental mappings of cryogenic biological samples to gain insights about their role in critical biological activities. The elemental mappings and the morphological aspects of the biological samples, in this instance, the bacterium Escherichia coli (E. Coli), also serve as label-free biological fingerprints to identify E. coli cells that have been treated differently. The key limitations of achieving good identification performance are the extraction of cells from raw XRF measurements via binary conversion, definition of features, noise floor and proportion of cells treated differently in the measurement. Automating cell extraction from raw XRF measurements across different types of chemical treatment and the implementation of machine-learning models to distinguish cells from the background and their differing treatments are described. Principal components are calculated from domain knowledge specific features and clustered to distinguish healthy and poisoned cells from the background without manual annotation. The cells are ranked via fuzzy clustering to recommend regions of interest for automated experimentation. The effects of dwell time and the amount of data required on the usability of the software are also discussed.
Funder
US Department of Energy, Office of Science
National Institutes of Health
Argonne National Laboratory
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献