Mapping nanocrystal orientations via scanning Laue diffraction microscopy for multi-peak Bragg coherent diffraction imaging

Author:

Zhang YuehengORCID,Porter J. NicholasORCID,Wilkin Matthew J.,Harder Ross,Cha WonsukORCID,Suter Robert M.ORCID,Liu He,Schnebly LandonORCID,Sandberg Richard L.ORCID,Miller Joshua A.ORCID,Tischler Jon,Pateras AnastasiosORCID,Rollett Anthony D.ORCID

Abstract

The recent commissioning of a movable monochromator at the 34-ID-C endstation of the Advanced Photon Source has vastly simplified the collection of Bragg coherent diffraction imaging (BCDI) data from multiple Bragg peaks of sub-micrometre scale samples. Laue patterns arising from the scattering of a polychromatic beam by arbitrarily oriented nanocrystals permit their crystal orientations to be computed, which are then used for locating and collecting several non-co-linear Bragg reflections. The volumetric six-component strain tensor is then constructed by combining the projected displacement fields that are imaged using each of the measured reflections via iterative phase retrieval algorithms. Complications arise when the sample is heterogeneous in composition and/or when multiple grains of a given lattice structure are simultaneously illuminated by the polychromatic beam. Here, a workflow is established for orienting and mapping nanocrystals on a substrate of a different material using scanning Laue diffraction microscopy. The capabilities of the developed algorithms and procedures with both synthetic and experimental data are demonstrated. The robustness is verified by comparing experimental texture maps obtained with Laue diffraction microscopy at the beamline with maps obtained from electron back-scattering diffraction measurements on the same patch of gold nanocrystals. Such tools provide reliable indexing for both isolated and densely distributed nanocrystals, which are challenging to image in three dimensions with other techniques.

Funder

US Department of Energy, Office of Science, Basic Energy Sciences

Carnegie Mellon University

Brigham Young University

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3