Abstract
In-line X-ray phase-contrast computed tomography (IL-PCCT) can reveal fine inner structures for low-Z materials (e.g. biological soft tissues), and shows high potential to become clinically applicable. Typically, IL-PCCT utilizes filtered back-projection (FBP) as the standard reconstruction algorithm. However, the FBP algorithm requires a large amount of projection data, and subsequently a large radiation dose is needed to reconstruct a high-quality image, which hampers its clinical application in IL-PCCT. In this study, an iterative reconstruction algorithm for IL-PCCT was proposed by combining the simultaneous algebraic reconstruction technique (SART) with eight-neighbour forward and backward (FAB8) diffusion filtering, and the reconstruction was performed using the Shepp–Logan phantom simulation and a real synchrotron IL-PCCT experiment. The results showed that the proposed algorithm was able to produce high-quality computed tomography images from few-view projections while improving the convergence rate of the computed tomography reconstruction, indicating that the proposed algorithm is an effective method of dose reduction for IL-PCCT.
Funder
The National Natural Science Foundation of China
The Natural Science Foundation of Tianjin City in China
The Science and Technology Commission Foundation of Tianjin
The Open Project of Key laboratory of Opto-electronic Information Technology, Ministry of Education
The Foundation of Tianjin university of technology and education
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献