Abstract
Boron carbide is a prominent material for high-brilliance synchrotron optics as it remains stable up to very high temperatures. The present study shows a significant change taking place at 550°C in the buried interface region formed between the Cr adhesive layer and the native oxide layer present on the silicon substrate. An in situ annealing study is carried out at the Indus-1 Reflectivity beamline from room temperature to 550°C (100°C steps). The studied sample is a mirror-like boron carbide thin film of 400 Å thickness deposited with an adhesive layer of 20 Å Cr on a silicon substrate. The corresponding changes in the film structure are recorded using angle-dependent soft X-ray reflectivity measurements carried out in the region of the boron K-edge after each annealing temperature. Analyses performed using the Parratt recursive formalism reveal that the top boron carbide layer remains intact but interface reactions take place in the buried Cr–SiO2 region. After 300°C the Cr layer diffuses towards the substrate. At higher temperatures of 500°C and 550°C the Cr reacts with the native oxide layer and tends to form a low-density compound of chromium oxysilicide (CrSiO
x
). Depth profiling of Si and Cr distributions obtained from secondary ion mass spectroscopy measurements corroborate the layer model obtained from the soft X-ray reflectivity analyses. Details of the interface reaction taking place near the substrate region of boron carbide/Cr sample are discussed.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献