XANES reflects coordination change and underlying surface disorder of zinc adsorbed to silica

Author:

Nelson JoeyORCID

Abstract

Zinc K-edge X-ray absorption near-edge structure (XANES) spectroscopy of Zn adsorbed to silica and Zn-bearing minerals, salts and solutions was conducted to explore how XANES spectra reflect coordination environment and disorder in the surface to which a metal ion is sorbed. Specifically, XANES spectra for five distinct Zn adsorption complexes (Znads) on quartz and amorphous silica [SiO2(am)] are presented from the Zn–water–silica surface system: outer-sphere octahedral Znads on quartz, inner-sphere octahedral Znads on quartz, inner-sphere tetrahedral Znads on quartz, inner-sphere octahedral Znads on SiO2(am) and inner-sphere tetrahedral Znads on SiO2(am). XANES spectral analysis of these complexes on quartz versus SiO2(am) reveals that normalized peak absorbance and K-edge energy position generally decrease with increasing surface disorder and decreasing Zn–O coordination. On quartz, the absorption-edge energy of Znads ranges from 9663.0 to 9664.1 eV for samples dominated by tetrahedrally versus octahedrally coordinated species, respectively. On SiO2(am), the absorption-edge energy of Znads ranges from 9662.3 to 9663.4 eV for samples dominated by tetrahedrally versus octahedrally coordinated species, respectively. On both silica substrates, octahedral Znads presents a single K-edge peak feature, whereas tetrahedral Znads presents two absorbance features. The energy space between the two absorbance peak features of the XANES K-edge of tetrahedral Znads is 2.4 eV for Zn on quartz and 3.2 eV for Zn on SiO2(am). Linear combination fitting of samples with a mixture of Znads complex types demonstrates that the XANES spectra of octahedral and tetrahedral Znads on silica are distinct enough for quantitative identification. These results suggest caution when deciphering Zn speciation in natural samples via linear combination approaches using a single Znads standard to represent sorption on a particular mineral surface. Correlation between XANES spectral features and prior extended X-ray absorption fine structure (EXAFS) derived coordination environments for these Znads on silica samples provides insight into Zn speciation in natural systems with XANES compatible Zn concentrations too low for EXAFS analysis.

Funder

National Science Foundation

U.S. Department of Energy, Office of Science

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3