Solid/liquid-interface-dependent synthesis and immobilization of copper-based particles nucleated by X-ray-radiolysis-induced photochemical reaction

Author:

Yamaguchi AkinobuORCID,Sakurai IkuyaORCID,Okada Ikuo,Izumi Hirokazu,Ishihara Mari,Fukuoka Takao,Suzuki Satoru,Utsumi Yuichi

Abstract

X-ray-radiolysis-induced photochemical reaction of a liquid solution enables the direct synthesis and immobilization of nano/micro-scale particles and their aggregates onto a desired area. As is well known, the synthesis, growth and aggregation are dependent on the pH, additives and X-ray irradiation conditions. In this study, it was found that the topography and composition of synthesized particles are also dependent on the types of substrate dipped in an aqueous solution of Cu(COOCH3)2 in the X-ray-radiolysis-induced photochemical reaction. These results are attributed to the fact that a secondary electron induced by the X-ray irradiation, surface or interface on which the particles are nucleated and grown influences the particle shape and composition. This study will shed light on understanding a novel photochemical reaction route induced under X-ray irradiation. The development of this process using the X-ray-radiolysis-induced photochemical reaction in aqueous liquids enables us to achieve the rapid and easy operation of the synthesis, growth and immobilization of special nano/micro-scale complex materials or multifunctional composites.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3