Author:
Kiran Kumar A. B. V.,Billa Sanjeev,Shankar Edugulla Girija,Subha M. C. S.
Abstract
It is crucial to develop an environmentally friendly and low-cost method to treat industrial effluent that contains soluble dyes and microbes. Most of the photocatalysts have been studied using an external light source that increases the cost of the purification process of effluent. This study focuses on developing efficient solar photocatalytic nanofoams. The controlled growth of ZnO nanofoams (CNZ nanofoams) in a simple method of thermal oxidation using a soft template is reported. Prepared nanofoams are characterized using X-ray diffraction, scanning electon microscopy and synchrotron soft X-ray absorption spectroscopy. By photocatalysis studies under direct sunlight it was found that within 120 min CNZ nanofoams degraded 99% of the dye. In addition, antimicrobial studies of multi-drug-resistant E. Fergusonii isolated from wastewater was carried out. These antimicrobial results showed a good inhibition zone, indicating that prepared nanofoams are both an effective solar photocatalyst and an antimicrobial agent.
Funder
UGC-DAE Consortium for Scientific Research
UGC-DAE CSR
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献