Author:
Chen Michael A.,Kocar Benjamin D.
Abstract
The study of in situ microscale biogeochemical processes represents a major challenge in the environmental sciences. The combination of microfluidic devices with X-ray fluorescence microprobe spectroscopy may address this need, but typical materials used in these devices attenuate the X-rays needed to analyze key elements of interest, such as Fe or As. In this work, a method is presented for fabricating an etched silicon microfluidic device that is sealed with a 30 µm thin glass window that is sufficiently transparent for X-ray fluorescence microprobe spectroscopy. The capabilities of these devices for X-ray microprobe spectroscopy are demonstrated using an Fe (hydr)oxide solid that is loaded with As and then infused with sulfide, on beamline 4-BM at NSLS-II, resulting in time-variant Fe precipitation reactions and As sorption. Key results include in situ X-ray fluorescence time-series maps of Fe, As and a Br flow tracer, as well as spot XANES at both the Fe K edge and As K edge. Additionally, multiple energy mapping is used to examine the spatial speciation of As over time. The results of this work clearly demonstrate the capabilities of this novel microfluidic system that can be analyzed using X-ray fluorescence microprobe spectroscopy and can be made to study a wide range of complex microscale geochemical systems.
Funder
Massachusetts Institute of Technology
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献