Determination of the through-plane profile of vanadium species in hydrated Nafion studied with micro X-ray absorption near-edge structure spectroscopy – proof of concept

Author:

Lutz ChristianORCID,Hampel SvenORCID,Beuermann SabineORCID,Turek ThomasORCID,Kunz UlrichORCID,Garrevoet JanORCID,Falkenberg GeraldORCID,Fittschen UrsulaORCID

Abstract

Vanadium-ion transport through the polymer membrane results in a significant decrease in the capacity of vanadium redox flow batteries. It is assumed that five vanadium species are involved in this process. Micro X-ray absorption near-edge structure spectroscopy (micro-XANES) is a potent method to study chemical reactions during vanadium transport inside the membrane. In this work, protocols for micro-XANES measurements were developed to enable through-plane characterization of the vanadium species in Nafion 117 on beamline P06 of the PETRA III synchrotron radiation facility (DESY, Hamburg, Germany). A Kapton tube diffusion cell with a diameter of 3 mm was constructed. The tube diameter was chosen in order to accommodate laminar flow for cryogenic cooling while allowing easy handling of the cell components by hand. A vertical step size of 2.5 µm and a horizontal step size of 5 µm provided sufficient resolution to resolve the profile and good statistics after summing up horizontal rows of scan points. The beam was confined in the horizontal plane to account for the waviness of the membrane. The diffusion of vanadium ions during measurement was inhibited by the cryogenic cooling. Vanadium oxidation, e.g. by water radiolysis (water percentage in the hydrated membrane ∼23 wt%), was mitigated by the cryogenic cooling and by minimizing the dwell time per pixel to 5 ms. Thus, the photo-induced oxidation of V3+ in the focused beam could be limited to 10%. In diffusion experiments, Nafion inside the diffusion cell was exposed on one side to V3+ electrolyte and on the other side to VO2 +. The ions were allowed to diffuse across the through-plane orientation of the membrane during one of two short defrost times (200 s and 600 s). Subsequent micro-XANES measurements showed the formation of VO2+ from V3+ and VO2 + inside the water body of Nafion. This result proves the suitability of the experimental setup as a powerful tool for the determination of the profile of vanadium species in Nafion and other ionomeric membranes.

Funder

Deutsches Elektronen-Synchrotron

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3