A new full-field XRF imaging station at Synchrotron Light Research Institute

Author:

Klysubun Wantana,Tarawarakarn PongjakrORCID,Thamsanong NoppawathORCID,Mahakhod Sompin,Amonpattaratkit PenphitchaORCID,Cholsuk Chanakan

Abstract

A full-field X-ray fluorescence imaging (FXI) station was recently developed at beamline BL8 of Synchrotron Light Research Institute (SLRI), Thailand. An unfocused, synchrotron X-ray beam from the bending magnet with a size of 2 mm (vertical) × 13 mm (horizontal) and photon energy of 10 keV was employed in the FXI experiments. A sample stage was tilted by 7.5° to enlarge the vertical beam size. X-ray fluorescence images were recorded by an energy-dispersive, 256 × 256 array, pn-type charge coupled device detector equipped with a polycapillary optics, providing a full-frame image size of 12.3 mm × 12.3 mm. The incident photon flux per pixel was 3 × 104 photons s−1 (100 mA)−1 and the experimental spatial resolution was 68 µm. Image processing was carried out offline using an in-house MATLAB program capable of elemental selection and inhomogeneity intensity correction. Elemental detection limits of FXI were found to decrease with increasing atomic number, i.e. 0.3 to 0.03 wt% for Z = 19 (K) to 30 (Zn). Compared with the BL6b microbeam imaging (µXI) station at SLRI with higher photon flux per pixel, 3 × 1010 photons s−1 (100 mA)−1, a tenfold sample area can be obtained and 13 times higher peak-to-background (PKB) ratio at Zn K α measured with the same experimental time (8 h). Simultaneous measurement of FXI is more time-efficient against the long overhead times of µXI scanning over large pixel numbers, >65000. To demonstrate potential applications of the new FXI station, various types of samples were examined: dendritic limestone, ancient bronze and dried fish. Analyzed elemental images enabled us to identify areas rich in Mn on the limestone, Sn and Cu separation in the bronze, and Zn nutrition in the dried fish eye.

Funder

Synchrotron Light Research Institute

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3